Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
2.
Europace ; 25(9)2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37713626

RESUMO

AIMS: Electro-anatomical voltage, conduction velocity (CV) mapping, and late gadolinium enhancement (LGE) magnetic resonance imaging (MRI) have been correlated with atrial cardiomyopathy (ACM). However, the comparability between these modalities remains unclear. This study aims to (i) compare pathological substrate extent and location between current modalities, (ii) establish spatial histograms in a cohort, (iii) develop a new estimated optimized image intensity threshold (EOIIT) for LGE-MRI identifying patients with ACM, (iv) predict rhythm outcome after pulmonary vein isolation (PVI) for persistent atrial fibrillation (AF). METHODS AND RESULTS: Thirty-six ablation-naive persistent AF patients underwent LGE-MRI and high-definition electro-anatomical mapping in sinus rhythm. Late gadolinium enhancement areas were classified using the UTAH, image intensity ratio (IIR >1.20), and new EOIIT method for comparison to low-voltage substrate (LVS) and slow conduction areas <0.2 m/s. Receiver operating characteristic analysis was used to determine LGE thresholds optimally matching LVS. Atrial cardiomyopathy was defined as LVS extent ≥5% of the left atrium (LA) surface at <0.5 mV. The degree and distribution of detected pathological substrate (percentage of individual LA surface are) varied significantly (P < 0.001) across the mapping modalities: 10% (interquartile range 0-14%) of the LA displayed LVS <0.5 mV vs. 7% (0-12%) slow conduction areas <0.2 m/s vs. 15% (8-23%) LGE with the UTAH method vs. 13% (2-23%) using IIR >1.20, with most discrepancies on the posterior LA. Optimized image intensity thresholds and each patient's mean blood pool intensity correlated linearly (R2 = 0.89, P < 0.001). Concordance between LGE-MRI-based and LVS-based ACM diagnosis improved with the novel EOIIT applied at the anterior LA [83% sensitivity, 79% specificity, area under the curve (AUC): 0.89] in comparison to the UTAH method (67% sensitivity, 75% specificity, AUC: 0.81) and IIR >1.20 (75% sensitivity, 62% specificity, AUC: 0.67). CONCLUSION: Discordances in detected pathological substrate exist between LVS, CV, and LGE-MRI in the LA, irrespective of the LGE detection method. The new EOIIT method improves concordance of LGE-MRI-based ACM diagnosis with LVS in ablation-naive AF patients but discrepancy remains particularly on the posterior wall. All methods may enable the prediction of rhythm outcomes after PVI in patients with persistent AF.


Assuntos
Fibrilação Atrial , Cardiomiopatias , Ablação por Cateter , Humanos , Fibrilação Atrial/diagnóstico por imagem , Fibrilação Atrial/cirurgia , Meios de Contraste , Gadolínio , Estudos de Coortes , Átrios do Coração/diagnóstico por imagem , Átrios do Coração/cirurgia , Átrios do Coração/patologia , Imageamento por Ressonância Magnética/métodos , Cardiomiopatias/etiologia , Ablação por Cateter/efeitos adversos
3.
Artif Intell Med ; 143: 102619, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37673581

RESUMO

Cardiovascular diseases account for 17 million deaths per year worldwide. Of these, 25% are categorized as sudden cardiac death, which can be related to ventricular tachycardia (VT). This type of arrhythmia can be caused by focal activation sources outside the sinus node. Catheter ablation of these foci is a curative treatment in order to inactivate the abnormal triggering activity. However, the localization procedure is usually time-consuming and requires an invasive procedure in the catheter lab. To facilitate and expedite the treatment, we present two novel localization support techniques based on convolutional neural networks (CNNs) that address these clinical needs. In contrast to existing methods, our approaches were designed to be independent of the patient-specific geometry and directly applicable to surface ECG signals, while also delivering a binary transmural position. Moreover, one of the method's outputs can be interpreted as several ranked solutions. The CNNs were trained on a dataset containing only simulated data and evaluated both on simulated test data and clinical data. On a novel large and open simulated dataset, the median test error was below 3 mm. The median localization error on the unseen clinical data ranged from 32 mm to 41 mm without optimizing the pre-processing and CNN to the clinical data. Interpreting the output of one of the approaches as ranked solutions, the best median error of the top-3 solutions decreased to 20 mm on the clinical data. The transmural position was correctly detected in up to 82% of all clinical cases. These results demonstrate a proof of principle to utilize CNNs to localize the activation source without the intrinsic need for patient-specific geometrical information. Furthermore, providing multiple solutions can assist physicians in identifying the true activation source amongst more than one possible location. With further optimization to clinical data, these methods have high potential to accelerate clinical interventions, replace certain steps within these procedures and consequently reduce procedural risk and improve VT patient outcomes.


Assuntos
Aprendizado Profundo , Médicos , Humanos , Redes Neurais de Computação , Pacientes
4.
Sci Data ; 10(1): 531, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553349

RESUMO

Mechanistic cardiac electrophysiology models allow for personalized simulations of the electrical activity in the heart and the ensuing electrocardiogram (ECG) on the body surface. As such, synthetic signals possess known ground truth labels of the underlying disease and can be employed for validation of machine learning ECG analysis tools in addition to clinical signals. Recently, synthetic ECGs were used to enrich sparse clinical data or even replace them completely during training leading to improved performance on real-world clinical test data. We thus generated a novel synthetic database comprising a total of 16,900 12 lead ECGs based on electrophysiological simulations equally distributed into healthy control and 7 pathology classes. The pathological case of myocardial infraction had 6 sub-classes. A comparison of extracted features between the virtual cohort and a publicly available clinical ECG database demonstrated that the synthetic signals represent clinical ECGs for healthy and pathological subpopulations with high fidelity. The ECG database is split into training, validation, and test folds for development and objective assessment of novel machine learning algorithms.


Assuntos
Eletrocardiografia , Coração , Humanos , Algoritmos , Aprendizado de Máquina , Miocárdio
5.
Comput Med Imaging Graph ; 108: 102265, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37392493

RESUMO

Digital twins of patients' hearts are a promising tool to assess arrhythmia vulnerability and to personalize therapy. However, the process of building personalized computational models can be challenging and requires a high level of human interaction. We propose a patient-specific Augmented Atria generation pipeline (AugmentA) as a highly automated framework which, starting from clinical geometrical data, provides ready-to-use atrial personalized computational models. AugmentA identifies and labels atrial orifices using only one reference point per atrium. If the user chooses to fit a statistical shape model to the input geometry, it is first rigidly aligned with the given mean shape before a non-rigid fitting procedure is applied. AugmentA automatically generates the fiber orientation and finds local conduction velocities by minimizing the error between the simulated and clinical local activation time (LAT) map. The pipeline was tested on a cohort of 29 patients on both segmented magnetic resonance images (MRI) and electroanatomical maps of the left atrium. Moreover, the pipeline was applied to a bi-atrial volumetric mesh derived from MRI. The pipeline robustly integrated fiber orientation and anatomical region annotations in 38.4 ± 5.7 s. In conclusion, AugmentA offers an automated and comprehensive pipeline delivering atrial digital twins from clinical data in procedural time.


Assuntos
Fibrilação Atrial , Humanos , Átrios do Coração/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
6.
J Cardiovasc Electrophysiol ; 34(8): 1613-1621, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37365931

RESUMO

INTRODUCTION: Improved sinus rhythm (SR) maintenance rates have been achieved in patients with persistent atrial fibrillation (AF) undergoing pulmonary vein isolation plus additional ablation of low voltage substrate (LVS) during SR. However, voltage mapping during SR may be hindered in persistent and long-persistent AF patients by immediate AF recurrence after electrical cardioversion. We assess correlations between LVS extent and location during SR and AF, aiming to identify regional voltage thresholds for rhythm-independent delineation/detection of LVS areas. (1) Identification of voltage dissimilarities between mapping in SR and AF. (2) Identification of regional voltage thresholds that improve cross-rhythm substrate detection. (3) Comparison of LVS between SR and native versus induced AF. METHODS: Forty-one ablation-naive persistent AF patients underwent high-definition (1 mm electrodes; >1200 left atrial (LA) mapping sites per rhythm) voltage mapping in SR and AF. Global and regional voltage thresholds in AF were identified which best match LVS < 0.5 mV and <1.0 mV in SR. Additionally, the correlation between SR-LVS with induced versus native AF-LVS was assessed. RESULTS: Substantial voltage differences (median: 0.52, interquartile range: 0.33-0.69, maximum: 1.19 mV) with a predominance of the posterior/inferior LA wall exist between the rhythms. An AF threshold of 0.34 mV for the entire left atrium provides an accuracy, sensitivity and specificity of 69%, 67%, and 69% to identify SR-LVS < 0.5 mV, respectively. Lower thresholds for the posterior wall (0.27 mV) and inferior wall (0.3 mV) result in higher spatial concordance to SR-LVS (4% and 7% increase). Concordance with SR-LVS was higher for induced AF compared to native AF (area under the curve[AUC]: 0.80 vs. 0.73). AF-LVS < 0.5 mV corresponds to SR-LVS < 0.97 mV (AUC: 0.73). CONCLUSION: Although the proposed region-specific voltage thresholds during AF improve the consistency of LVS identification as determined during SR, the concordance in LVS between SR and AF remains moderate, with larger LVS detection during AF. Voltage-based substrate ablation should preferentially be performed during SR to limit the amount of ablated atrial myocardium.


Assuntos
Apêndice Atrial , Fibrilação Atrial , Ablação por Cateter , Humanos , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/cirurgia , Técnicas Eletrofisiológicas Cardíacas , Átrios do Coração/cirurgia
7.
Sci Data ; 10(1): 279, 2023 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-37179420

RESUMO

Machine learning (ML) methods for the analysis of electrocardiography (ECG) data are gaining importance, substantially supported by the release of large public datasets. However, these current datasets miss important derived descriptors such as ECG features that have been devised in the past hundred years and still form the basis of most automatic ECG analysis algorithms and are critical for cardiologists' decision processes. ECG features are available from sophisticated commercial software but are not accessible to the general public. To alleviate this issue, we add ECG features from two leading commercial algorithms and an open-source implementation supplemented by a set of automatic diagnostic statements from a commercial ECG analysis software in preprocessed format. This allows the comparison of ML models trained on clinically versus automatically generated label sets. We provide an extensive technical validation of features and diagnostic statements for ML applications. We believe this release crucially enhances the usability of the PTB-XL dataset as a reference dataset for ML methods in the context of ECG data.


Assuntos
Algoritmos , Eletrocardiografia , Software , Eletrocardiografia/métodos , Aprendizado de Máquina , Humanos
8.
Europace ; 25(1): 211-222, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35943361

RESUMO

AIMS: The long-term success rate of ablation therapy is still sub-optimal in patients with persistent atrial fibrillation (AF), mostly due to arrhythmia recurrence originating from arrhythmogenic sites outside the pulmonary veins. Computational modelling provides a framework to integrate and augment clinical data, potentially enabling the patient-specific identification of AF mechanisms and of the optimal ablation sites. We developed a technology to tailor ablations in anatomical and functional digital atrial twins of patients with persistent AF aiming to identify the most successful ablation strategy. METHODS AND RESULTS: Twenty-nine patient-specific computational models integrating clinical information from tomographic imaging and electro-anatomical activation time and voltage maps were generated. Areas sustaining AF were identified by a personalized induction protocol at multiple locations. State-of-the-art anatomical and substrate ablation strategies were compared with our proposed Personalized Ablation Lines (PersonAL) plan, which consists of iteratively targeting emergent high dominant frequency (HDF) regions, to identify the optimal ablation strategy. Localized ablations were connected to the closest non-conductive barrier to prevent recurrence of AF or atrial tachycardia. The first application of the HDF strategy had a success of >98% and isolated only 5-6% of the left atrial myocardium. In contrast, conventional ablation strategies targeting anatomical or structural substrate resulted in isolation of up to 20% of left atrial myocardium. After a second iteration of the HDF strategy, no further arrhythmia episode could be induced in any of the patient-specific models. CONCLUSION: The novel PersonAL in silico technology allows to unveil all AF-perpetuating areas and personalize ablation by leveraging atrial digital twins.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Veias Pulmonares , Taquicardia Supraventricular , Humanos , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/cirurgia , Resultado do Tratamento , Átrios do Coração/cirurgia , Simulação por Computador , Veias Pulmonares/cirurgia , Ablação por Cateter/efeitos adversos , Ablação por Cateter/métodos , Recidiva
9.
IEEE Trans Biomed Eng ; 70(2): 511-522, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35921339

RESUMO

OBJECTIVE: The bidomain model and the finite element method are an established standard to mathematically describe cardiac electrophysiology, but are both suboptimal choices for fast and large-scale simulations due to high computational costs. We investigate to what extent simplified approaches for propagation models (monodomain, reaction-Eikonal and Eikonal) and forward calculation (boundary element and infinite volume conductor) deliver markedly accelerated, yet physiologically accurate simulation results in atrial electrophysiology. METHODS: We compared action potential durations, local activation times (LATs), and electrocardiograms (ECGs) for sinus rhythm simulations on healthy and fibrotically infiltrated atrial models. RESULTS: All simplified model solutions yielded LATs and P waves in accurate accordance with the bidomain results. Only for the Eikonal model with pre-computed action potential templates shifted in time to derive transmembrane voltages, repolarization behavior notably deviated from the bidomain results. ECGs calculated with the boundary element method were characterized by correlation coefficients 0.9 compared to the finite element method. The infinite volume conductor method led to lower correlation coefficients caused predominantly by systematic overestimations of P wave amplitudes in the precordial leads. CONCLUSION: Our results demonstrate that the Eikonal model yields accurate LATs and combined with the boundary element method precise ECGs compared to markedly more expensive full bidomain simulations. However, for an accurate representation of atrial repolarization dynamics, diffusion terms must be accounted for in simplified models. SIGNIFICANCE: Simulations of atrial LATs and ECGs can be notably accelerated to clinically feasible time frames at high accuracy by resorting to the Eikonal and boundary element methods.


Assuntos
Fibrilação Atrial , Sistema de Condução Cardíaco , Humanos , Sistema de Condução Cardíaco/fisiologia , Modelos Cardiovasculares , Átrios do Coração , Simulação por Computador , Eletrofisiologia Cardíaca , Coração/fisiologia
10.
IEEE Trans Biomed Eng ; 70(2): 533-543, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35925848

RESUMO

BACKGROUND: Electrical impedance measurements have become an accepted tool for monitoring intracardiac radio frequency ablation. Recently, the long-established generator impedance was joined by novel local impedance measurement capabilities with all electrical circuit terminals being accommodated within the catheter. OBJECTIVE: This work aims at in silico quantification of distinct influencing factors that have remained challenges due to the lack of ground truth knowledge and the superposition of effects in clinical settings. METHODS: We introduced a highly detailed in silico model of two local impedance enabled catheters, namely IntellaNav MiFi OI and IntellaNav Stablepoint, embedded in a series of clinically relevant environments. Assigning material and frequency specific conductivities and subsequently calculating the spread of the electrical field with the finite element method yielded in silico local impedances. The in silico model was validated by comparison to in vitro measurements of standardized sodium chloride solutions. We then investigated the effect of the withdrawal of the catheter into the transseptal sheath, catheter-tissue interaction, insertion of the catheter into pulmonary veins, and catheter irrigation. RESULTS: All simulated setups were in line with in vitro experiments and in human measurements and gave detailed insight into determinants of local impedance changes as well as the relation between values measured with two different devices. CONCLUSION: The in silico environment proved to be capable of resembling clinical scenarios and quantifying local impedance changes. SIGNIFICANCE: The tool can assists the interpretation of measurements in humans and has the potential to support future catheter development.


Assuntos
Ablação por Cateter , Átrios do Coração , Humanos , Impedância Elétrica , Condutividade Elétrica , Catéteres , Simulação por Computador , Ablação por Cateter/métodos
11.
Front Physiol ; 13: 794761, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035466

RESUMO

Conduction velocity (CV) slowing is associated with atrial fibrillation (AF) and reentrant ventricular tachycardia (VT). Clinical electroanatomical mapping systems used to localize AF or VT sources as ablation targets remain limited by the number of measuring electrodes and signal processing methods to generate high-density local activation time (LAT) and CV maps of heterogeneous atrial or trabeculated ventricular endocardium. The morphology and amplitude of bipolar electrograms depend on the direction of propagating electrical wavefront, making identification of low-amplitude signal sources commonly associated with fibrotic area difficulty. In comparison, unipolar electrograms are not sensitive to wavefront direction, but measurements are susceptible to distal activity. This study proposes a method for local CV calculation from optical mapping measurements, termed the circle method (CM). The local CV is obtained as a weighted sum of CV values calculated along different chords spanning a circle of predefined radius centered at a CV measurement location. As a distinct maximum in LAT differences is along the chord normal to the propagating wavefront, the method is adaptive to the propagating wavefront direction changes, suitable for electrical conductivity characterization of heterogeneous myocardium. In numerical simulations, CM was validated characterizing modeled ablated areas as zones of distinct CV slowing. Experimentally, CM was used to characterize lesions created by radiofrequency ablation (RFA) on isolated hearts of rats, guinea pig, and explanted human hearts. To infer the depth of RFA-created lesions, excitation light bands of different penetration depths were used, and a beat-to-beat CV difference analysis was performed to identify CV alternans. Despite being limited to laboratory research, studies based on CM with optical mapping may lead to new translational insights into better-guided ablation therapies.

12.
Front Cardiovasc Med ; 9: 812719, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35295255

RESUMO

Aims: Atrial fibrillation (AF) and heart failure often co-exist. Early identification of AF patients at risk for AF-induced heart failure (AF-HF) is desirable to reduce both morbidity and mortality as well as health care costs. We aimed to leverage the characteristics of beat-to-beat-patterns in AF to prospectively discriminate AF patients with and without AF-HF. Methods: A dataset of 10,234 5-min length RR-interval time series derived from 26 AF-HF patients and 26 control patients was extracted from single-lead Holter-ECGs. A total of 14 features were extracted, and the most informative features were selected. Then, a decision tree classifier with 5-fold cross-validation was trained, validated, and tested on the dataset randomly split. The derived algorithm was then tested on 2,261 5-min segments from six AF-HF and six control patients and validated for various time segments. Results: The algorithm based on the spectral entropy of the RR-intervals, the mean value of the relative RR-interval, and the root mean square of successive differences of the relative RR-interval yielded an accuracy of 73.5%, specificity of 91.4%, sensitivity of 64.7%, and PPV of 87.0% to correctly stratify segments to AF-HF. Considering the majority vote of the segments of each patient, 10/12 patients (83.33%) were correctly classified. Conclusion: Beat-to-beat-analysis using a machine learning classifier identifies patients with AF-induced heart failure with clinically relevant diagnostic properties. Application of this algorithm in routine care may improve early identification of patients at risk for AF-induced cardiomyopathy and improve the yield of targeted clinical follow-up.

13.
Europace ; 24(7): 1186-1194, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35045172

RESUMO

AIMS: Atrial flutter (AFlut) is a common re-entrant atrial tachycardia driven by self-sustainable mechanisms that cause excitations to propagate along pathways different from sinus rhythm. Intra-cardiac electrophysiological mapping and catheter ablation are often performed without detailed prior knowledge of the mechanism perpetuating AFlut, likely prolonging the procedure time of these invasive interventions. We sought to discriminate the AFlut location [cavotricuspid isthmus-dependent (CTI), peri-mitral, and other left atrium (LA) AFlut classes] with a machine learning-based algorithm using only the non-invasive signals from the 12-lead electrocardiogram (ECG). METHODS AND RESULTS: Hybrid 12-lead ECG dataset of 1769 signals was used (1424 in silico ECGs, and 345 clinical ECGs from 115 patients-three different ECG segments over time were extracted from each patient corresponding to single AFlut cycles). Seventy-seven features were extracted. A decision tree classifier with a hold-out classification approach was trained, validated, and tested on the dataset randomly split after selecting the most informative features. The clinical test set comprised 38 patients (114 clinical ECGs). The classifier yielded 76.3% accuracy on the clinical test set with a sensitivity of 89.7%, 75.0%, and 64.1% and a positive predictive value of 71.4%, 75.0%, and 86.2% for CTI, peri-mitral, and other LA class, respectively. Considering majority vote of the three segments taken from each patient, the CTI class was correctly classified at 92%. CONCLUSION: Our results show that a machine learning classifier relying only on non-invasive signals can potentially identify the location of AFlut mechanisms. This method could aid in planning and tailoring patient-specific AFlut treatments.


Assuntos
Flutter Atrial , Ablação por Cateter , Flutter Atrial/diagnóstico , Flutter Atrial/etiologia , Flutter Atrial/cirurgia , Eletrocardiografia/métodos , Sistema de Condução Cardíaco , Humanos , Aprendizado de Máquina
14.
IEEE Trans Biomed Eng ; 69(6): 2041-2052, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34905487

RESUMO

OBJECTIVE: To investigatecardiac activation maps estimated using electrocardiographic imaging and to find methods reducing line-of-block (LoB) artifacts, while preserving real LoBs. METHODS: Body surface potentials were computed for 137 simulated ventricular excitations. Subsequently, the inverse problem was solved to obtain extracellular potentials (EP) and transmembrane voltages (TMV). From these, activation times (AT) were estimated using four methods and compared to the ground truth. This process was evaluated with two cardiac mesh resolutions. Factors contributing to LoB artifacts were identified by analyzing the impact of spatial and temporal smoothing on the morphology of source signals. RESULTS: AT estimation using a spatiotemporal derivative performed better than using a temporal derivative. Compared to deflection-based AT estimation, correlation-based methods were less prone to LoB artifacts but performed worse in identifying real LoBs. Temporal smoothing could eliminate artifacts for TMVs but not for EPs, which could be linked to their temporal morphology. TMVs led to more accurate ATs on the septum than EPs. Mesh resolution had anegligible effect on inverse reconstructions, but small distances were important for cross-correlation-based estimation of AT delays. CONCLUSION: LoB artifacts are mainly caused by the inherent spatial smoothing effect of the inverse reconstruction. Among the configurations evaluated, only deflection-based AT estimation in combination with TMVs and strong temporal smoothing can prevent LoB artifacts, while preserving real LoBs. SIGNIFICANCE: Regions of slow conduction are of considerable clinical interest and LoB artifacts observed in non-invasive ATs can lead to misinterpretations. We addressed this problem by identifying factors causing such artifacts.


Assuntos
Artefatos , Coração , Algoritmos , Eletrocardiografia , Coração/diagnóstico por imagem
15.
Cells ; 10(11)2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34831076

RESUMO

During atrial fibrillation, cardiac tissue undergoes different remodeling processes at different scales from the molecular level to the tissue level. One central player that contributes to both electrical and structural remodeling is the myofibroblast. Based on recent experimental evidence on myofibroblasts' ability to contract, we extended a biophysical myofibroblast model with Ca2+ handling components and studied the effect on cellular and tissue electrophysiology. Using genetic algorithms, we fitted the myofibroblast model parameters to the existing in vitro data. In silico experiments showed that Ca2+ currents can explain the experimentally observed variability regarding the myofibroblast resting membrane potential. The presence of an L-type Ca2+ current can trigger automaticity in the myofibroblast with a cycle length of 799.9 ms. Myocyte action potentials were prolonged when coupled to myofibroblasts with Ca2+ handling machinery. Different spatial myofibroblast distribution patterns increased the vulnerable window to induce arrhythmia from 12 ms in non-fibrotic tissue to 22 ± 2.5 ms and altered the reentry dynamics. Our findings suggest that Ca2+ handling can considerably affect myofibroblast electrophysiology and alter the electrical propagation in atrial tissue composed of myocytes coupled with myofibroblasts. These findings can inform experimental validation experiments to further elucidate the role of myofibroblast Ca2+ handling in atrial arrhythmogenesis.


Assuntos
Fibrilação Atrial/metabolismo , Fibrilação Atrial/fisiopatologia , Cálcio/metabolismo , Simulação por Computador , Fenômenos Eletrofisiológicos , Átrios do Coração/metabolismo , Átrios do Coração/fisiopatologia , Miofibroblastos/patologia , Remodelação Ventricular , Algoritmos , Fibrose , Humanos , Potenciais da Membrana , Modelos Cardiovasculares , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miofibroblastos/metabolismo
16.
Med Image Anal ; 74: 102210, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34450467

RESUMO

Large-scale electrophysiological simulations to obtain electrocardiograms (ECG) carry the potential to produce extensive datasets for training of machine learning classifiers to, e.g., discriminate between different cardiac pathologies. The adoption of simulations for these purposes is limited due to a lack of ready-to-use models covering atrial anatomical variability. We built a bi-atrial statistical shape model (SSM) of the endocardial wall based on 47 segmented human CT and MRI datasets using Gaussian process morphable models. Generalization, specificity, and compactness metrics were evaluated. The SSM was applied to simulate atrial ECGs in 100 random volumetric instances. The first eigenmode of our SSM reflects a change of the total volume of both atria, the second the asymmetry between left vs. right atrial volume, the third a change in the prominence of the atrial appendages. The SSM is capable of generalizing well to unseen geometries and 95% of the total shape variance is covered by its first 24 eigenvectors. The P waves in the 12-lead ECG of 100 random instances showed a duration of 109.7±12.2 ms in accordance with large cohort studies. The novel bi-atrial SSM itself as well as 100 exemplary instances with rule-based augmentation of atrial wall thickness, fiber orientation, inter-atrial bridges and tags for anatomical structures have been made publicly available. This novel, openly available bi-atrial SSM can in future be employed to generate large sets of realistic atrial geometries as a basis for in silico big data approaches.


Assuntos
Átrios do Coração , Modelos Estatísticos , Eletrocardiografia , Átrios do Coração/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética
17.
Front Physiol ; 12: 699291, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34290623

RESUMO

In patients with atrial fibrillation, intracardiac electrogram signal amplitude is known to decrease with increased structural tissue remodeling, referred to as fibrosis. In addition to the isolation of the pulmonary veins, fibrotic sites are considered a suitable target for catheter ablation. However, it remains an open challenge to find fibrotic areas and to differentiate their density and transmurality. This study aims to identify the volume fraction and transmurality of fibrosis in the atrial substrate. Simulated cardiac electrograms, combined with a generalized model of clinical noise, reproduce clinically measured signals. Our hybrid dataset approach combines in silico and clinical electrograms to train a decision tree classifier to characterize the fibrotic atrial substrate. This approach captures different in vivo dynamics of the electrical propagation reflected on healthy electrogram morphology and synergistically combines it with synthetic fibrotic electrograms from in silico experiments. The machine learning algorithm was tested on five patients and compared against clinical voltage maps as a proof of concept, distinguishing non-fibrotic from fibrotic tissue and characterizing the patient's fibrotic tissue in terms of density and transmurality. The proposed approach can be used to overcome a single voltage cut-off value to identify fibrotic tissue and guide ablation targeting fibrotic areas.

18.
Biomed Eng Online ; 20(1): 69, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294108

RESUMO

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is typically caused by mutations in sarcomeric genes leading to cardiomyocyte disarray, replacement fibrosis, impaired contractility, and elevated filling pressures. These varying tissue properties are associated with certain strain patterns that may allow to establish a diagnosis by means of non-invasive imaging without the necessity of harmful myocardial biopsies or contrast agent application. With a numerical study, we aim to answer: how the variability in each of these mechanisms contributes to altered mechanics of the left ventricle (LV) and if the deformation obtained in in-silico experiments is comparable to values reported from clinical measurements. METHODS: We conducted an in-silico sensitivity study on physiological and pathological mechanisms potentially underlying the clinical HCM phenotype. The deformation of the four-chamber heart models was simulated using a finite-element mechanical solver with a sliding boundary condition to mimic the tissue surrounding the heart. Furthermore, a closed-loop circulatory model delivered the pressure values acting on the endocardium. Deformation measures and mechanical behavior of the heart models were evaluated globally and regionally. RESULTS: Hypertrophy of the LV affected the course of strain, strain rate, and wall thickening-the root-mean-squared difference of the wall thickening between control (mean thickness 10 mm) and hypertrophic geometries (17 mm) was >10%. A reduction of active force development by 40% led to less overall deformation: maximal radial strain reduced from 26 to 21%. A fivefold increase in tissue stiffness caused a more homogeneous distribution of the strain values among 17 heart segments. Fiber disarray led to minor changes in the circumferential and radial strain. A combination of pathological mechanisms led to reduced and slower deformation of the LV and halved the longitudinal shortening of the LA. CONCLUSIONS: This study uses a computer model to determine the changes in LV deformation caused by pathological mechanisms that are presumed to underlay HCM. This knowledge can complement imaging-derived information to obtain a more accurate diagnosis of HCM.


Assuntos
Cardiomiopatia Hipertrófica , Ventrículos do Coração , Cardiomiopatia Hipertrófica/diagnóstico por imagem , Meios de Contraste , Coração , Ventrículos do Coração/diagnóstico por imagem , Humanos
19.
Front Physiol ; 12: 673047, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34108887

RESUMO

BACKGROUND: Rate-varying S1S2 stimulation protocols can be used for restitution studies to characterize atrial substrate, ionic remodeling, and atrial fibrillation risk. Clinical restitution studies with numerous patients create large amounts of these data. Thus, an automated pipeline to evaluate clinically acquired S1S2 stimulation protocol data necessitates consistent, robust, reproducible, and precise evaluation of local activation times, electrogram amplitude, and conduction velocity. Here, we present the CVAR-Seg pipeline, developed focusing on three challenges: (i) No previous knowledge of the stimulation parameters is available, thus, arbitrary protocols are supported. (ii) The pipeline remains robust under different noise conditions. (iii) The pipeline supports segmentation of atrial activities in close temporal proximity to the stimulation artifact, which is challenging due to larger amplitude and slope of the stimulus compared to the atrial activity. METHODS AND RESULTS: The S1 basic cycle length was estimated by time interval detection. Stimulation time windows were segmented by detecting synchronous peaks in different channels surpassing an amplitude threshold and identifying time intervals between detected stimuli. Elimination of the stimulation artifact by a matched filter allowed detection of local activation times in temporal proximity. A non-linear signal energy operator was used to segment periods of atrial activity. Geodesic and Euclidean inter electrode distances allowed approximation of conduction velocity. The automatic segmentation performance of the CVAR-Seg pipeline was evaluated on 37 synthetic datasets with decreasing signal-to-noise ratios. Noise was modeled by reconstructing the frequency spectrum of clinical noise. The pipeline retained a median local activation time error below a single sample (1 ms) for signal-to-noise ratios as low as 0 dB representing a high clinical noise level. As a proof of concept, the pipeline was tested on a CARTO case of a paroxysmal atrial fibrillation patient and yielded plausible restitution curves for conduction speed and amplitude. CONCLUSION: The proposed openly available CVAR-Seg pipeline promises fast, fully automated, robust, and accurate evaluations of atrial signals even with low signal-to-noise ratios. This is achieved by solving the proximity problem of stimulation and atrial activity to enable standardized evaluation without introducing human bias for large data sets.

20.
Cardiovasc Digit Health J ; 2(2): 126-136, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33899043

RESUMO

BACKGROUND: Atrial fibrillation (AF) is the most common supraventricular arrhythmia, characterized by disorganized atrial electrical activity, maintained by localized arrhythmogenic atrial drivers. Pulmonary vein isolation (PVI) allows to exclude PV-related drivers. However, PVI is less effective in patients with additional extra-PV arrhythmogenic drivers. OBJECTIVES: To discriminate whether AF drivers are located near the PVs vs extra-PV regions using the noninvasive 12-lead electrocardiogram (ECG) in a computational and clinical framework, and to computationally predict the acute success of PVI in these cohorts of data. METHODS: AF drivers were induced in 2 computerized atrial models and combined with 8 torso models, resulting in 1128 12-lead ECGs (80 ECGs with AF drivers located in the PVs and 1048 in extra-PV areas). A total of 103 features were extracted from the signals. Binary decision tree classifier was trained on the simulated data and evaluated using hold-out cross-validation. The PVs were subsequently isolated in the models to assess PVI success. Finally, the classifier was tested on a clinical dataset (46 patients: 23 PV-dependent AF and 23 with additional extra-PV sources). RESULTS: The classifier yielded 82.6% specificity and 73.9% sensitivity for detecting PV drivers on the clinical data. Consistency analysis on the 46 patients resulted in 93.5% results match. Applying PVI on the simulated AF cases terminated AF in 100% of the cases in the PV class. CONCLUSION: Machine learning-based classification of 12-lead-ECG allows discrimination between patients with PV drivers vs those with extra-PV drivers of AF. The novel algorithm may aid to identify patients with high acute success rates to PVI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...